Masaki Ookuwa
Tokyo Institute of Technology
Application of the discrete WKB method to the ferromagnetic p-spin model with antiferromagnetic transverse interactions

We study the fully connected mean-field model with p-body ferromagnetic interactions and a transverse field. This model with p>2 has a quantum phase transition of first order as a function of the strength of the transverse field at T=0 [1]. This first-order transition is known to be reduced to second order by an introduction of antiferromagnetic transverse interactions [2], which makes the Hamiltonian non-stoquastic [3]. Thus the computational complexity is drastically reduced from exponential to polynomial. In order to understand this phenomenon in more detail, we applied the discrete WKB method [4] to analytically derive the coefficient of the exponential decay of the energy gap, b in $\exp(-bN)$, at the first-order transition. The result shows that the coefficient b is almost constant along the line of first order transition between the paramagnetic and ferromagnetic phases but changes significantly along the line of first order transitions within the ferromagnetic phase.

This work was done in collaboration with Hidetoshi Nishimori.