Probabilistic image processing and Bayesian network

Kazuyuki Tanaka
Graduate School of Information Sciences,
Tohoku University
kazu@smapip.is.tohoku.ac.jp
http://www.smapip.is.tohoku.ac.jp/~kazu/

References
Bayesian Network and Belief Propagation

Probabilistic Information Processing

Bayes Formula

Belief Propagation

Probabilistic Model

Bayesian Network

Contents

1. Introduction
2. Belief Propagation
3. Bayesian Image Analysis and Gaussian Graphical Model
4. Concluding Remarks
Belief Propagation

How should we treat the calculation of the summation over 2^N configuration?

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_N=0,1} W(x_1, x_2, \cdots, x_N)$$

It is very hard to calculate exactly except some special cases.

- Formulation for approximate algorithm
- Accuracy of the approximate algorithm
Tractable Model

Probabilistic models with no loop are tractable.

\[\sum_{a} \sum_{b} \sum_{c} \sum_{d} A(a, x)B(b, x)C(c, x)D(d, x) \]

\[= \left(\sum_{a} A(a, x) \right) \left(\sum_{b} B(b, x) \right) \left(\sum_{c} C(c, x) \right) \left(\sum_{d} D(d, x) \right) \]

Probabilistic models with loop are not tractable.

\[\sum_{a} \sum_{b} \sum_{c} \sum_{d} W(a, b, c, d, x) \]
Probabilistic model on a graph with no loop

\[P(a, b, c, d, x, y) \]
\[\equiv W_A(a, x)W_B(b, x)W_{12}(x, y)W_C(c, y)W_D(d, y) \]

\[P_2(y) \equiv \sum_a \sum_b \sum_c \sum_d \sum_x P(a, b, c, d, x, y) \]

Marginal probability of the node 2
Probabilistic model on a graph with no loop

\[P_2(y) = M_{5\rightarrow 2}(y)M_{6\rightarrow 2}(y)M_{1\rightarrow 2}(y) \]

\[M_{1\rightarrow 2}(y) = \sum_x W_{12}(x, y)M_{3\rightarrow 1}(x)M_{4\rightarrow 1}(x) \]

\[M_{2\rightarrow 1}(x) = \sum_y W_{12}(x, y)M_{5\rightarrow 2}(y)M_{6\rightarrow 2}(y) \]

Marginal probability can be expressed in terms of the product of messages from all the neighbouring nodes of node 2.

Message from the node 1 to the node 2 can be expressed in terms of the product of message from all the neighbouring nodes of the node 1 except one from the node 2.
Probabilistic Model on a Graph with Loops

\[P(x_1, x_2, \cdots, x_L) = \frac{1}{Z} \prod_{ij \in N} W_{ij}(x_i, x_j) \]

\[Z \equiv \sum_{\Omega} \prod_{x \mid ij \in N} W_{ij}(x_i, x_j) \]

Marginal Probability

\[P_1(x_1) = \sum_{x \setminus \{x_1\}} P(x_1, x_2, \cdots, x_L) \]

\[P_{12}(x_1, x_2) = \sum_{x \setminus \{x_1, x_2\}} P(x_1, x_2, \cdots, x_L) \]
Belief Propagation

\[Q_1(\xi) = \sum_\zeta Q_{12}(\xi, \zeta) \]

Message Update Rule

\[M_{1\to2}(\xi) \propto \sum_\zeta W_{12}(\zeta, \xi) M_{3\to1}(\zeta) \times M_{4\to1}(\zeta) M_{5\to1}(\zeta) \]

\[Q_1(x_1) = \frac{1}{Z_1} M_{2\to1}(x_1) M_{3\to1}(x_1) \times M_{4\to1}(x_1) M_{5\to1}(x_1) \]

\[Q_{12}(x_1, x_2) = \frac{1}{Z_{12}} M_{3\to1}(x_1) M_{4\to1}(x_1) M_{5\to1}(x_1) \times W_{12}(x_1, x_2) M_{6\to2}(x_2) M_{7\to2}(x_2) M_{8\to2}(x_2) \]
Message Passing Rule of Belief Propagation

\[
M_{1 \rightarrow 2}(\xi) = \frac{\sum W_{12}(\xi', \xi) M_{3 \rightarrow 1}(\xi) M_{4 \rightarrow 1}(\xi) M_{5 \rightarrow 1}(\xi)}{\sum \sum \sum W_{12}(\xi', \xi) M_{3 \rightarrow 1}(\xi) M_{4 \rightarrow 1}(\xi) M_{5 \rightarrow 1}(\xi)}
\]

Fixed Point Equations for Massage

\[
\hat{M} = \Phi(\hat{M})
\]
Fixed Point Equation and Iterative Method

Fixed Point Equation

\[\vec{M}^* = \Phi(\vec{M}^*) \]

Iterative Method

\[
\begin{align*}
\vec{M}_1 & \leftarrow \Phi(\vec{M}_0) \\
\vec{M}_2 & \leftarrow \Phi(\vec{M}_1) \\
\vec{M}_3 & \leftarrow \Phi(\vec{M}_2) \\
\vdots
\end{align*}
\]
Contents

1. Introduction
2. Belief Propagation
3. Bayesian Image Analysis and Gaussian Graphical Model
4. Concluding Remarks
Bayesian Image Analysis

Original Image

Degraded Image

Transmission

Noise

\[
\text{Pr}\{\text{Original Image}\|\text{Degraded Image}\} = \frac{\text{Pr}\{\text{Degraded Image}\|\text{Original Image}\}\text{Pr}\{\text{Original Image}\}}{\text{Pr}\{\text{Degraded Image}\}}
\]

Degradation Process

A Priori Probability

A Posteriori Probability

Marginal Likelihood
Bayesian Image Analysis

Degradation Process

\[g_i = f_i + n_i \]
\[n_i \sim N(0, \sigma^2) \]

\[P(g|f, \sigma) = \prod_{i \in \Omega} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(f_i - g_i)^2\right) \]
Bayesian Image Analysis

A Priori Probability

\[f_i, g_j \in (-\infty, +\infty) \]

\[
P(f|\alpha) = \frac{1}{Z_{PR}(\alpha)} \prod_{ij \in N} \exp \left(-\frac{1}{2} \alpha (f_i - f_j)^2 \right)
\]

Generate

Standard Images

Similar?
Bayesian Image Analysis

A Posteriori Probability

\[P(f | g, \alpha, \sigma) = \frac{P(g | f, \sigma)P(f | \alpha)}{P(g | \alpha, \sigma)} = \frac{1}{Z_{\text{POS}}(g, \alpha, \sigma)} \times \exp \left(-\frac{1}{2\sigma^2} \sum_{i \in \Omega} (f_i - g_i)^2 - \frac{1}{2} \alpha \sum_{ij \in N} (f_i - f_j)^2 \right) \]

Gaussian Graphical Model

\[f_i, g_j \in (-\infty, +\infty) \]
Bayesian Image Analysis

\[P(f \mid \alpha) \rightarrow f \rightarrow P(g \mid f, \sigma) \rightarrow g \]

- **A Priori Probability**
- **Original Image** \(f = \{f_i \mid i \in \Omega \} \)
- **Degraded Image** \(g = \{g_i \mid i \in \Omega \} \)

\[P(f \mid g, \alpha, \sigma) = \frac{P(g \mid f, \sigma)P(f \mid \alpha)}{P(g \mid \alpha, \sigma)} \]

\[\hat{f}_i = \int f_i P(f \mid g, \alpha, \sigma) df = \int_{-\infty}^{+\infty} f_i P(f_i \mid g, \alpha, \sigma) df_i \]
Hyperparameter Determination by Maximization of Marginal Likelihood

\[(\hat{\alpha}, \hat{\sigma}) = \arg \max_{(\alpha, \sigma)} P(g | \alpha, \sigma)\]

\[f_i = \int f_i P(f | g, \hat{\alpha}, \hat{\sigma}) \, df\]

\[P(g | \alpha, \sigma) = \int P(f, g | \alpha, \sigma) \, df = \int P(g | f, \sigma) P(f | \alpha) \, df\]

\[P(f, g | \alpha, \sigma) = P(g | f, \sigma) P(f | \alpha)\]

\[P(f | \alpha) \rightarrow f \rightarrow P(g | f, \sigma) \rightarrow g\]

\[\downarrow \text{Marginalization}\]

\[P(g | \alpha, \sigma) \rightarrow g\]

Original Image
\[f = \{f_i | i \in \Omega\}\]

Degraded Image
\[g = \{g_i | i \in \Omega\}\]

Marginal Likelihood
Maximization of Marginal Likelihood by EM (Expectation Maximization) Algorithm

Marginal Likelihood

\[P(g|\alpha, \sigma) = \int P(g|f, \sigma)P(f|\alpha)df \]

\[Q(\alpha', \sigma'|\alpha, \sigma, g) = \int P(f|g, \alpha, \sigma)\ln P(f, g|\alpha', \sigma')df \]

\[\frac{\partial}{\partial \sigma} P(g|\alpha, \sigma) = 0, \quad \frac{\partial}{\partial \alpha} P(g|\alpha, \sigma) = 0 \]

Incomplete Data

\[g = \{g_i | i \in \Omega\} \]

Equivalent

\[\left[\frac{\partial}{\partial \alpha'} Q(\alpha', \sigma'|\alpha, \sigma, g) \right]_{\alpha' = \alpha, \sigma' = \sigma} = 0, \quad \left[\frac{\partial}{\partial \sigma'} Q(\alpha', \sigma'|\alpha, \sigma, g) \right]_{\alpha' = \alpha, \sigma' = \sigma} = 0 \]
Maximization of Marginal Likelihood by EM (Expectation Maximization) Algorithm

Marginal Likelihood
\[P(g|\alpha, \sigma) = \int P(g|f, \sigma)P(f|\alpha)df \]

Q-Function
\[Q(\alpha', \sigma'|\alpha, \sigma, g) = \int P(f|g, \alpha, \sigma)\ln P(f, g|\alpha', \sigma')df \]

EM Algorithm
Iterate the following EM-steps until convergence:

E - Step: \[Q(\alpha', \sigma'|\alpha(t), \sigma(t)) \leftarrow \int P(f|g, \alpha(t), \sigma(t))\ln P(f, g|\alpha', \sigma')df \].

M - Step: \[(\alpha(t+1), \sigma(t+1)) \leftarrow \arg\max_{(\alpha', \sigma')} Q(\alpha', \sigma'|\alpha(t), \sigma(t)) \].

One-Dimensional Signal

EM Algorithm

Original Signal

\[f_i \]

Degraded Signal

\[g_i \]

\[\sigma = 40 \]

Estimated Signal

\[\hat{f}_i \]

\[(\hat{\sigma}, \hat{\alpha}) = (31.25, 0.0217) \]
Image Restoration by Gaussian Graphical Model

Original Image Degraded Image

![Original Image](image1.png) ![Degraded Image](image2.png)

Original Image: MSE: 1512
Degraded Image: MSE: 1529

EM Algorithm with Belief Propagation

![Graph](graph.png)
Exact Results of Gaussian Graphical Model

\[P(f|g, \alpha, \sigma) = \frac{1}{Z_{\text{POS}}(g, \alpha, \sigma)} \exp \left(-\frac{1}{2\sigma^2} \sum_{i \in \Omega} (f_i - g_i)^2 - \frac{1}{2} \alpha \sum_{i,j \in N} (f_i - f_j)^2 \right) \]

\[= \frac{\exp \left(-\frac{1}{2\sigma^2} \|f - g\|^2 - \frac{1}{2} \alpha f^T Cf \right)}{\int \exp \left(-\frac{1}{2\sigma^2} \|f - g\|^2 - \frac{1}{2} \alpha f^T Cf \right) df} \]

Multi-dimensional Gauss integral formula

\[P(g|\alpha, \sigma) = \frac{\det(\alpha C)}{\sqrt{(2\pi)^{|\Omega|} \det(I + \alpha \sigma^2 C)}} \exp \left(-\frac{1}{2} \alpha g^T \frac{C}{I + \alpha \sigma^2 C} g \right) \]

\[(\hat{\alpha}, \hat{\sigma}) = \arg \max_{(\alpha, \sigma)} P(g|\alpha, \sigma) \]

\[\hat{f} = \left(I + \alpha \sigma^{-2} C \right)^{-1} g \]
Comparison of Belief Propagation with Exact Results in Gaussian Graphical Model

\[(\hat{\alpha}, \hat{\sigma}) = \text{arg max } P(g|\alpha, \sigma)\]

| | MSE | \(\hat{\alpha}\) | \(\hat{\sigma}\) | \(\ln P(g|\hat{\alpha}, \hat{\sigma})\) |
|----------------|-------|-------------------|-------------------|---|
| **Belief Propagation** | | | | |
| | 327 | 0.000611 | 36.302 | -5.19201 |
| **Exact** | 315 | 0.000759 | 37.919 | -5.21444 |
| **Belief Propagation** | | | | |
| | 260 | 0.000574 | 33.998 | -5.15241 |
| **Exact** | 236 | 0.000652 | 34.975 | -5.17528 |

\[\text{MSE} = \frac{1}{|\Omega|} \sum_{i \in \Omega} (f_i - \hat{f}_i)^2\]
Image Restoration by Gaussian Graphical Model

Original Image

Degraded Image

Belief Propagation

Exact

MSE: 1512

MSE: 325

MSE: 315

Lowpass Filter

Wiener Filter

Median Filter

MSE: 411

MSE: 545

MSE: 447

\[
\text{MSE} = \frac{1}{|\Omega|} \sum_{i \in \Omega} (f_i - \hat{f}_i)^2
\]
Image Restoration by Gaussian Graphical Model

Original Image Degraded Image Belief Propagation Exact

Lowpass Filter Wiener Filter Median Filter

MSE: 1529 MSE: 260 MSE 236

MSE: 224 MSE: 372 MSE: 244

$$\text{MSE} = \frac{1}{|\Omega|} \sum_{i \in \Omega} (f_i - \hat{f}_i)^2$$
Extension of Belief Propagation

Generalized Belief Propagation

Generalized belief propagation is equivalent to the cluster variation method in statistical mechanics

Image Restoration by Gaussian Graphical Model

\(\sigma = 40\)

\[
\text{MSE} = \frac{1}{|\Omega|} \sum_{i \in \Omega} (f_i - \hat{f}_i)^2
\]

\((\hat{\alpha}, \hat{\sigma}) = \arg \max_{(\alpha, \sigma)} P(g|\alpha, \sigma)\)

| Method | MSE | \(\hat{\alpha}\) | \(\hat{\sigma}\) | \(\ln P(g|\hat{\alpha}, \hat{\sigma})\) |
|---------------------------------|------|-------------------|-------------------|--|
| Belief Propagation | 327 | 0.000611 | 36.302 | -5.19201 |
| Generalized Belief Propagation | 315 | 0.000758 | 37.909 | -5.21172 |
| Exact | 315 | 0.000759 | 37.919 | -5.21444 |

\(\sigma = 40\)

| Method | MSE | \(\hat{\alpha}\) | \(\hat{\sigma}\) | \(\ln P(g|\hat{\alpha}, \hat{\sigma})\) |
|---------------------------------|------|-------------------|-------------------|--|
| Belief Propagation | 260 | 0.000574 | 33.998 | -5.15241 |
| Generalized Belief Propagation | 236 | 0.000652 | 34.971 | -5.17256 |
| Exact | 236 | 0.000652 | 34.975 | -5.17528 |
Image Restoration by Gaussian Graphical Model and Conventional Filters

\[\sigma = 40 \]

\[
MSE = \frac{1}{|\Omega|} \sum_{(x,y) \in \Omega} (f_{x,y} - \hat{f}_{x,y})^2
\]

<table>
<thead>
<tr>
<th></th>
<th>MSE</th>
<th>Lowpass Filter</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belief Propagation</td>
<td>327</td>
<td>(3x3) 388</td>
<td>(5x5) 413</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalized Belief Propagation</td>
<td>315</td>
<td>(3x3) 486</td>
<td>(5x5) 445</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact</td>
<td>315</td>
<td>(3x3) 864</td>
<td>(5x5) 548</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3x3) Lowpass (5x5) Median (5x5) Wiener
Image Restoration by Gaussian Graphical Model and Conventional Filters

$\sigma = 40$

<table>
<thead>
<tr>
<th>Method</th>
<th>MSE</th>
<th>Filter Type</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belief Propagation</td>
<td>260</td>
<td>Lowpass Filter</td>
<td></td>
</tr>
<tr>
<td>Generalized Belief Propagation</td>
<td>236</td>
<td>Median Filter</td>
<td>331</td>
</tr>
<tr>
<td>Exact</td>
<td>236</td>
<td>Wiener Filter</td>
<td>703</td>
</tr>
</tbody>
</table>

$MSE = \frac{1}{|\Omega|} \sum_{(x,y) \in \Omega} (f_{x,y} - \hat{f}_{x,y})^2$

(5x5) Lowpass (5x5) Median (5x5) Wiener
Contents

1. Introduction
2. Belief Propagation
3. Bayesian Image Analysis and Gaussian Graphical Model
4. Concluding Remarks
Summary

- Formulation of belief propagation
- Accuracy of belief propagation in Bayesian image analysis by means of Gaussian graphical model (Comparison between the belief propagation and exact calculation)